机器学习(ML)(八) — 探析
介绍
无监督机器学习使用的是自学习算法,在学习时无需任何标签,也无需事先训练。相反,模型会获得不带标签的原始数据。自学习规则,并根据相似之处、差异和模式来建立信息结构,且无需向该模型提供关于如何处理各项数据的明确说明。无监督机器学习更适合处理复杂的任务。它能够很好的识别出数据中以前未检测到的模式,并且有助于识别用于数据分类的特征。假设有一个关于天气的大型数据集,无监督学习算法会分析数据并识别数据点中的模式。例如,它可能会按温度或类似的天气模式对数据进行分组。虽然算法本身无法根据之前提供的任何信息来理解这些模式,但可以查看数据分组情况,并根据对数据集的理解并对其进行分类。例如天气模式被划分为不同类型的天气,如雨、雨夹雪或雪。