UMBRELLA

未雨绸缪,举重若轻

UML 是一种开放的方法,用于说明、可视化、构建和编写一个正在开发的、面向对象的、软件密集系统的制品的开放方法。UML展现了一系列最佳工程实践,这些最佳实践在对大规模,复杂系统进行建模方面,特别是在软件架构层次已经被验证有效。

阅读全文 »

SOLID 设计原则并非单纯的一个原则,它实际上包含5个设计原则:单一职责原则、开闭原则、里氏替换替换原则,接口隔离原则和依赖反转原则。

单一职责原则(SRP

SRP(Single Responsibility Principle) 这个原则的意思是一个类或者一个模块只负责完成一个功能。所以,这里有两种理解方式,一种理解是把模块看做比类更加抽象的概念,类也可以看做是模块。另一种理解是把类看做是比类更加粗粒度的代码块,模块中包含多个类。

单一职责原则定义非常简单,不难理解。一个类只负责完成一个职责或者功能,也就是说,不要设计大而全的类,要设计粒度小、功能单一的类。换个角度来讲就是,一个雷包含了两个或者两个以上业务不相干的功能,那我们就说它职责不够单一,应该将它拆分成多个功能更加单一、粒度更细的类。举例来讲,如果一个类包含了用户和订单的一些操作,而用户和订单又是独立的业务领域模型,我们将它们放到一起就违反了单一职责原则,我们就需要进行拆分。

不同的应用场景、不同阶段的需求背景、不同的业务层面,对于同一个类的职责是否单一,可能会有不用的判定结果。实际上,一些侧面的判断指标更具有指导意义和可执行性,比如,代码行数过度,函数或者属性过多都可能是违反单一职责原则的表象。

例如,下面的 UserInfo 类,这个类里面除了用户的基本信息,还有地址信息。或许一个观点是都属于用户的基本信息应该放在一起,另一个观点是可以拆分出 UserAddress 类,UserInfo 只保留除 Address 之外的其他信息,拆分之后两个类的职责更加单一。是否应该拆分,取决于具体情况,如果实际中地址信息和基本信息总是同时出现,那放在一起没有问题。但是如果地址信息单独在其他模块中使用,就应该单独抽象成 UserAddress

1
2
3
4
5
6
7
8
9
10
11
12
13
public class UserInfo {
private long userId;
private String username;
private String email;
private String telephone;
private long createTime;
private long lastLoginTime;
private String avatarUrl;
private String provinveOfAddress;
private String cityOfAddress;
private String regionOfAddress;
private String detailedAddress;
}

单一职责原则指导设计粒度较小的类,职责清晰的类,类的依赖以及被依赖的其他类也很会变少,从而降低代码的耦合性,实现高内聚、低耦合。但是如果拆分的过细,可能会适得其反,影响代码的可维护性。

阅读全文 »

几年前在面试的时候,还经常被面试官问 OOP 的四个特征是什么以及他们背后代表的意思,几年过去了,除了不支持面向对象的语言之外,面向对象编程思想已经深入到了每个开发者的灵魂,只是做的好与不好罢了。

面向对象编程中有两个非常基础的概念,类和对象,面向对象编程是一种编程范式或者说编程风格,它以类或者对象作为组织代码的基本单元,并将封装,继承,抽象,多态作为代码设计和实现的基石,不像面向过程编程语言,以函数为程序中的基本单元。

面向对象编程只是一种编程思想,可以用不同的语言进行实现,即使我们用面向对象语言,也完全可以写出面向过程风格的代码。至于什么是面向对象编程语言,并没有严格的定义,只要它能实现 OOP 的四大特性,那它就是面向对象编程语言,例如:RustC++GOJavaPython 以及 PHP 等,

面向对象编程的前提是面向对象分析(OOA)和面向对象设计(OOD),这样才能进行面向对象编程(OOP),具备完整的面向对象编程的思维。面向对象分析和设计两个阶段的产物应该是类的设计,包括应用程序应该被分为哪些类,每个类该有哪些属性和方法,类与类之间如何交互等等,它们比较贴近代码,非常具体,容易落地实现。

OOAOOD 的过程中,我们会经常用到 UML(Unified Model Language) 工具辅助我们进行工作。UML 是一种比较复杂的工具,除了包括我们常见的类图,还有用例图,顺序图,活动图,状态图,组件图等,即使是类图,类之间的关系就有泛化,实现,关联,聚合,组合以及依赖等,熟练掌握难度比较大,即便你掌握了,你同事不一定掌握,沟通成本依然很高,大多时候,我们会用草图实现我们的设计过程。

阅读全文 »

设计模式是软件设计中常见问题的典型解决方案。它们就像能根据需求进行调整的预制蓝图,可用于解决代码中反复出现的设计问题。

设计模式与方法或库的使用方式不同,很难直接在自己的程序中套用某个设计模式。模式并不是一段特定的代码,而是解决特定问题的一般性概念。可以根据模式来实现符合自己程序实际所需的解决方案。

人们常常会混淆模式和算法, 因为两者在概念上都是已知特定问题的典型解决方案。但算法总是明确定义达成特定目标所需的一系列步骤,而模式则是对解决方案的更高层次描述,同一模式在两个不同程序中的实现代码可能会不一样。

算法更像是菜谱:提供达成目标的明确步骤。而模式更像是蓝图:可以看到最终的结果和模式的功能,但需要自己确定实现步骤。

设计模式从分类上来讲,可以分为创建型、结构型和行为型。

阅读全文 »

如果我们正在开发一个聊天室,并且使用线程处理每个连接,我们的代码可能看起来像下面这个样子:

1
2
3
4
5
6
7
8
9
use std::{net, thread};
let listener = net::TcpListener::bind(address)?;
for socket_result in listener.incoming() {
let socket = socket_result?;
let groups = chat_group_table.clone();
thread::spawn(|| {
log_error(serve(socket, groups));
});
}

对于每个新连接,这都会产生一个运行 serve 函数的新线程,该线程能够专注于管理单个连接的处理。

这很好用,但是如果突然用户达到成千上万时,线程堆栈增长到 100 KiB 或这更多时,这可能要花费几个GB的内存。线程对于在多个处理器之间分配工作是非常好的一种形式,但是它们的内存需求使得我们在使用时要非常小心。

不过可以使用 Rust 异步任务在单个线程或工作线程池上并发运行许多独立活动。异步任务类似于线程,但创建速度更快,并且内存开销比线程少一个数量级。在一个程序中同时运行数十万个异步任务是完全可行的。当然,应用程序可能仍会受到网络带宽、数据库速度、计算或工作固有内存要求等其他因素的限制,但内存开销远没有线程那么多。

一般来说,异步 Rust 代码看起来很像普通的多线程代码,除了涉及到的 I/O 操作,互斥锁等阻塞操作需要稍微的不同处理。之前代码的异步版本如下所示:

1
2
3
4
5
6
7
8
9
10
11
use async_std::{net, task};

let listener = net::TcpListener::bind(address).await?;
let mut new_connections = listener.incoming();
while let Some(socket_result) = new_connections.next().await {
let socket = socket_result?;
let groups = chat_group_table.clone();
task::spawn(async {
log_error(serve(socket, groups).await);
});
}

这使用 async_stdnettask模块,并在可能阻塞的调用之后添加 .await。但整体结构与基于线程的版本相同。

本节的目标不仅是帮助编写异步代码,而且还以足够详细的方式展示它的工作原理,以便可以预测它在应用程序中的表现,并了解它最有价值的地方。

  • 为了展示异步编程的机制,我们列出了涵盖所有核心概念的最小语言特性集:futures、异步函数、await 表达式、task 以及 block_onspawn_local executor

  • 然后我们介绍异步代码块和 spawn executor。这些对于完成实际工作至关重要,但从概念上讲,它们只是我们刚刚提到的功能的变体。在此过程中,我们会可能会遇到一些异步编程特有的问题,但是需要学习如何处理它们;

  • 为了展示所有这些部分的协同工作,我们浏览了聊天服务器和客户端的完整代码,前面的代码片段是其中的一部分;

  • 为了说明原始 futuresexecutors 是如何工作的,我们提供了 spawn_blockingblock_on 的简单但功能性的实现;

  • 最后,我们解释了 Pin 类型,它在异步接口中不时出现,以确保安全使用异步函数和 futures

阅读全文 »

UnicodeASCII 匹配所有 ASCII 字符,从 00x7f。例如,都将字符 * 分配给码点 42。类似地,Unicode00xff 分配给与 ISO/IEC 8859-1 字符集相同的字符,用于西欧语言的 8ASCII 超集。Unicode 将此码点范围称为 Latin-1 代码块。

因为 UnicodeLatin-1 的超集,所以从 Latin-1 转换到 Unicode 是完全允许的:

1
2
3
fn latin1_to_char(latin1: u8) -> char {
latin1 as char
}

假设码点在 Latin-1 范围内,反向转换也很简单:

1
2
3
4
5
6
7
fn char_to_latin1(c: char) -> Option<u8> {
if c as u32 <= 0xff {
Some(c as u8)
} else {
None
}
}

RustStringstr 类型都是使用 UTF-8 编码格式,它是一种变长编码,使用14个字节对字符进行编码。有效的 UTF-8 序列有两个限制。首先,对于任何给定码点,只有最短的编码被认为是有效的,也就是不能花费4个字节来编码一个适合3个字节的码点。 此规则确保给定代码点只有一个 UTF-8 编码。其次,有效的 UTF-8 不得编码为 0xd8000xdfff 或超过 0x10ffff 的数字:这些数字要么保留用于非字符目的,要么完全超出 Unicode 的范围。

阅读全文 »

Rust 标准库包含几个集合,用于在内存中存储数据的泛型类型。我们已经在前面使用了集合,例如 VecHashMap。在本章中,我们将详细介绍这两种类型的方法,以及其他6个标准集合。

Rust 一共有8个标准集合类型,它们都是泛型:

  • Vec<T>:一个可增长的、堆分配的 T 类型值数组;

  • VecDeque<T>:与 Vec<T> 类似,但更适合用作先进先出队列,它支持在列表的前面和后面有效地添加和删除值;

  • BinaryHeap<T>:一个优先队列,BinaryHeap 中的值是有组织的,所以它总是有效地找到并删除最大值;

  • HashMap<K, V>:键值对表,通过键查找值很快,item 以任意顺序存储;

  • BTreeMap<K, V>:与 HashMap<K, V> 类似,但它保持entries按键排序。 BTreeMap<String, i32> 以字符串比较顺序存储其entries。除非需要entries保持排序,否则 HashMap 更快;

  • HashSet<T>:一组 T 类型的值。添加和删除值很快,查询给定值是否在集合中也很快;

  • BTreeSet<T>:与 HashSet<T> 类似,但它保持元素按值排序。 同样,除非需要对数据进行排序,否则 HashSet 更快;

阅读全文 »

Rust 用于输入和输出的标准库功能围绕三个Trait组织:ReadBufReadWrite

  • 实现 Read 的值具有面向字节的输入的方法,他们被称为 Reader

  • 实现 BufRead 的值是缓冲读取器,它们支持 Read 的所有方法,以及读取文本行等的方法;

  • 实现 Write 的值支持面向字节和UTF-8 文本输出,它们被称为 Writer

在本节中,将解释如何使用这些Trait及其方法,涵盖图中所示的读取器和写入器类型,并展示与文件、终端和网络交互的其他方式。

ReadersWriters

Readers 是内容输入源,可以从哪里读取字节。例如:

Writers 是那些你可以把值写入的地方,例如:

  • 使用 std::fs::File::create 创建的文件;

  • 基于网络连接 std::net::TcpStream 传输数据;

  • std::io::stdout()std::io:stderr() 可以用于向标准输出和标准错误写入内容;

  • std::io::Cursor<Vec<u8>> 类似,但允许读取和写入数据,并在vector中寻找不同的位置;

  • std::io::Cursor<&mut [u8]> 和上面的类似,但是不能增长内部的 buffer,因为它仅仅是已存在的字节数组的引用;

由于ReaderWriter有标准的 Traitstd::io::Readstd::io::Write),编写适用于各种输入或输出通道的通用代码是很常见的。 例如,这是一个将所有字节从任何读取器复制到任何写入器的函数:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
use std::io::{self, ErrorKind, Read, Write};

const DEFAULT_BUF_SIZE: usize = 8 * 1024;

pub fn copy<R: ?Sized, W: ?Sized>(reader: &mut R, writer: &mut W) -> io::Result<u64>
where
R: Read,
W: Write,
{
let mut buf = [0; DEFAULT_BUF_SIZE];
let mut written = 0;
loop {
let len = match reader.read(&mut buf) {
Ok(0) => return Ok(written),
Ok(len) => len,
Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
Err(e) => return Err(e),
};
writer.write_all(&buf[..len])?;
written += len as u64;
}
}

这是 Rust 标准库 std::io::copy() 的实现,因为它是泛型的,所以可以把数据从 File 复制到 TcpStream,或者从 Stdin 到内存中的 Vec<u8>

阅读全文 »

Rust 提供了一种非常好的并发使用方法,它不强制所有程序采用单一风格,而是通过安全地支持多种风格,并由编译器强制执行。我们将介绍三种使用 Rust 线程的方法:

  • Fork-join 并行;
  • 通道(Chanel);
  • 共享可变状态;

在此过程中,将使用到目前为止所学的有关 Rust 语言的所有内容,Rust 对引用、可变性和生命周期的关注在单线程程序中足够有价值,但在并发编程中,这些规则的真正意义变得显而易见。

Fork-Join Parallelism

最简单的用于多线程的案例是处理互不相干的任务,例如,我们要处理大量的文档,可能会这样写:

1
2
3
4
5
6
7
8
fn process_files(filenames: Vec<String>) -> io::Result<()> {
for document in filenames {
let text = load(&document)?; // read source file
let results = process(text); // compute statistics
save(&document, results)?; // write output file
}
Ok(())
}
阅读全文 »

Rust 语言支持宏,如我们之前使用的 assert_eq!println! 等。宏做了函数不能做的一些事情,例如,assert_eq! 当一个断言失败时,assert_eq! 生成包含断言的文件名和行号的错误消息,普通函数无法获取这些信息,但宏可以,因为它们的工作方式完全不同。

宏是一种简写,在编译期间,在检查类型和生成任何机器代码之前,每个宏调用都会被扩展。也就是说,它被一些 Rust 代码替换。assert_eq! 调用扩展为大致如下:

1
2
3
4
5
6
7
8
9
10
match (&gcd(6, 10), &2) {
(left_val, right_val) => {
if !(*left_val == *right_val) {
panic!(
"assertion failed: `(left == right)`, (left: `{:?}`, right: `{:?}`)",
left_val, right_val
);
}
}
}

panic! 也是一个宏,它本身扩展为更多的 Rust 代码。该代码使用到了另外两个宏:file!()line!()。 一旦 crate 中的每个宏调用都被完全展开,Rust 就会进入下一个编译阶段。

在运行时,断言失败看起来像这样:

thread 'main' panicked at 'assertion failed: `(left == right)`, (left: `17`, right: `2`)', gcd.rs:7

如果熟悉 C++,可能对宏有过一些不好的体验。但是 Rust 宏采用不同的方法,类似于 Scheme 的语法规则。与 C++ 宏相比,Rust 宏可以更好地与语言的其余部分集成,因此更不容易出错。宏调用总是标有感叹号 !,因此在阅读代码时它们会比较突出,所以不会意外调用它们。Rust 宏从不插入不匹配的括号或圆括号,并且 Rust 宏带有模式匹配,使得编写既可维护又易于使用的宏变得更加容易。

在本节中,我们将通过几个简单的例子来展示如何编写宏。但与 Rust 的大部分内容一样,理解宏需要下很大功夫。在这里将介绍一个很复杂的宏的设计,它可以将 JSON 文字直接嵌入到我们的程序中。但是宏的内容涵盖的非常多,因此这里将提供一些进一步研究的建议,包括我们在此处展示的高级技术,以及称为过程宏的更强大的工具。

阅读全文 »
0%