网络中的网络 (NiN)(TensorFlow)

LeNet、AlexNetVGG都有一个共同的设计模式:通过一系列的卷积层与汇聚层来提取空间结构特征;然后通过全连接层对特征的表征进行处理。AlexNetVGGLeNet的改进主要在于如何扩大和加深这两个模块。或者,可以想象在这个过程的早期使用全连接层。然而,如果使用了全连接层,可能会完全放弃表征的空间结构。网络中的网络(NiN)提供了一个非常简单的解决方案:在每个像素的通道上分别使用多层感知机。

NiN块

回想一下,卷积层的输入和输出由四维张量组成,张量的每个轴分别对应样本、通道、高度和宽度。另外,全连接层的输入和输出通常是分别对应于样本和特征的二维张量。NiN的想法是在每个像素位置(针对每个高度和宽度)应用一个全连接层。如果我们将权重连接到每个空间位置,我们可以将其视为卷积层,或作为在每个像素位置上独立作用的全连接层。从另一个角度看,即将空间维度中的每个像素视为单个样本,将通道维度视为不同特征(feature)。

下图说明了VGGNiN及它们的块之间主要架构差异。NiN块以一个普通卷积层开始,后面是两个的卷积层。这两个卷积层充当带有ReLU激活函数的逐像素全连接层。第一层的卷积窗口形状通常由用户设置。随后的卷积窗口形状固定为

NiN模型

最初的NiN网络是在AlexNet后不久提出的,显然从中得到了一些启示。NiN使用窗口形状为的卷积层,输出通道数量与AlexNet中的相同。每个NiN块后有一个最大汇聚层,汇聚窗口形状为,步幅为2NiNAlexNet之间的一个显著区别是NiN完全取消了全连接层。相反,NiN使用一个NiN块,其输出通道数等于标签类别的数量。最后放一个全局平均汇聚层(global average pooling layer),生成一个对数几率(logits)。NiN设计的一个优点是,它显著减少了模型所需参数的数量。然而,在实践中,这种设计有时会增加训练模型的时间。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import tensorflow as tf

def nin_block(num_channels, kernel_size, strides, padding):
return tf.keras.models.Sequential([
tf.keras.layers.Conv2D(num_channels, kernel_size, strides=strides, padding=padding, activation='relu'),
tf.keras.layers.Conv2D(num_channels, kernel_size=1, activation='relu'),
tf.keras.layers.Conv2D(num_channels, kernel_size=1, activation='relu')])

def net():
return tf.keras.models.Sequential([
nin_block(96, kernel_size=11, strides=4, padding='valid'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2),
nin_block(256, kernel_size=5, strides=1, padding='same'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2),
nin_block(384, kernel_size=3, strides=1, padding='same'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2),
tf.keras.layers.Dropout(0.5),
# 标签类别数是10
nin_block(10, kernel_size=3, strides=1, padding='same'),
tf.keras.layers.GlobalAveragePooling2D(),
tf.keras.layers.Reshape((1, 1, 10)),
# 将四维的输出转成二维的输出,其形状为(批量大小,10)
tf.keras.layers.Flatten(),
])

# 我们创建一个数据样本来查看每个块的输出形状。
X = tf.random.uniform((1, 224, 224, 1))
for layer in net().layers:
X = layer(X)
print(layer.__class__.__name__,'output shape:\t', X.shape)

结果输出为:

1
2
3
4
5
6
7
8
9
10
11
Sequential output shape:     (1, 54, 54, 96)
MaxPooling2D output shape: (1, 26, 26, 96)
Sequential output shape: (1, 26, 26, 256)
MaxPooling2D output shape: (1, 12, 12, 256)
Sequential output shape: (1, 12, 12, 384)
MaxPooling2D output shape: (1, 5, 5, 384)
Dropout output shape: (1, 5, 5, 384)
Sequential output shape: (1, 5, 5, 10)
GlobalAveragePooling2D output shape: (1, 10)
Reshape output shape: (1, 1, 1, 10)
Flatten output shape: (1, 10)

训练模型

和以前一样,我们使用Fashion-MNIST来训练模型。训练NiN与训练AlexNet、VGG时相似。

总结

NiN块使用由一个卷积层和多个卷积层组成的块。该块可以在卷积神经网络中使用,以允许更多的每像素非线性。NiN去除了容易造成过拟合的全连接层,将它们替换为全局平均汇聚层(即在所有位置上进行求和)。该汇聚层通道数量为所需的输出数量(例如,Fashion-MNIST的输出为10)。移除全连接层可减少过拟合,同时显著减少NiN的参数。NiN的设计影响了许多后续卷积神经网络的设计。